Optical Constants of Ge and GeO$_2$ from Ellipsometry

T. Nathan Nunley, Nalin Fernando, Jaime Moya, Nuwanjula S. Samarasingha, Cayla M. Nelson, Stefan Zollner
Department of Physics, New Mexico State University, Las Cruces, NM, USA

2016 DPG Frühjahrstagung
Regensburg, 9. März 2016, HL 59.10

Wo ist Las Cruces?

NIR/VIS/QUV ellipsometry:
190 to 2500 nm, 77 to 800 K

http://ellipsometry.nmsu.edu

NSF: DMR-1505172
AFOSR: FA9550-13-1-0022
Flat & uniform films, at least 5 by 5 mm², low surface roughness, films on single-side polished substrate

Email: zollner@nmsu.edu

http://ellipsometry.nmsu.edu
Biography

Regensburg
Germany

Motorola (Mesa, Tempe)
Arizona, 1997-2005

Las Cruces, NM
Since 2010

Motorola, Freescale
Texas, 2005-2007

Freescale, IBM
New York, 91-92, 07-10
SiGe:C Metrology: How thick is my film?

Si$_{1-x}$Ge$_x$ alloys

100 thickness measurements
Need precise values of refractive index

Si$_{1-x}$Ge$_x$ alloys

High-resolution XRD

Spectroscopic Ellipsometry

SiGe:C base

Si cap (emitter)

Si substrate

Why Germanium?

- First transistor built with Ge.
- High frequency applications (bipolar).
- Excellent infrared photodetector.
- **Recent interest: PMOS channel material.**
- Training students in semiconductor physics
- Why not?

SciFi CMOS cartoon:
Multi-Sample Analysis

- **Single sample**: Ellipsometry of one GeO$_2$/Ge sample
 - Unknown Ge optical constants
 - Unknown GeO$_2$ (native oxide) optical constants and thickness
 - This problem is under-determined (not enough data).

- **Multi-sample analysis**:
 - Grow thermal oxides on Ge with different thicknesses.
 - All oxides identical; only thickness varies between samples.
 - Fit all data simultaneously (over-determined).

- **Ellipsometry measurements**:
 - J.A. Woollam VASE ellipsometer with Berek compensator.
 - 0.5 to 6.6 eV (with halogen lamp).
 - 60°-75° angle of incidence.
 - Fit with parametric oscillator model.
Substrate Cleaning and Thermal Oxidation

- **Substrate cleaning:**
 - Remove most of the native oxide.
 - Leave **stable (but thin)** native oxide.
 - No harsh chemicals (BHF, Br:Meth).
 - UV ozone clean at 150°C for 1 hour, followed by cool-down incubation.
 - Ultrasonic clean in DI water followed by isopropanol (20 min each).

- **Thermal oxidation:**
 - 20 by 20 mm² undoped Ge pieces.
 - Single-side polished.
 - Anneal in O₂ (2.7 atm) at 550°C to avoid oxide (GeO) desorption.
 - 1-10 hours; 35 to 130 nm thick.
 - Some spots, but OK.
 - GeO₂ unstable and water-soluble, measure soon.
$d^2 + Ad = B(t + \tau)$
X-ray reflectance of typical sample (550°C, 1 h, 33 nm)

GeO₂ density ρ: 90% of bulk
Lower ρ near surface
Higher ρ near substrate
Thickness: 33 nm
Roughness: 0.5 nm (2%, neglect)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Electron Density (eÅ⁻³)</th>
<th>Bulk Electron Density (eÅ⁻³)</th>
<th>Thickness (nm)</th>
<th>Roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeO₂</td>
<td>0.84</td>
<td>1.14</td>
<td>1.67</td>
<td>0.4429</td>
</tr>
<tr>
<td>GeO₂</td>
<td>1.03</td>
<td>1.14</td>
<td>30.8</td>
<td>0.4734</td>
</tr>
<tr>
<td>GeO</td>
<td>1.24</td>
<td></td>
<td>0.79</td>
<td>0.9723</td>
</tr>
<tr>
<td>Ge</td>
<td>1.36</td>
<td>1.36</td>
<td>Substrate</td>
<td>0.6906</td>
</tr>
</tbody>
</table>
Ge wafer with native oxide (2.3 nm)

- Measurement right after cleaning, excellent fit to data.
- Herzinger-Johs parametric oscillator model for Ge.

Jellison-Sales method for transparent glasses:
Δ at 75° below band gap determines oxide thickness (2.3 nm)
Ge wafer with 34 nm thermal oxide (one hour)

- Cleaned, then oxidized for one hour at 550ºC, 33 nm by XRR.
- 5% non-uniformity.
- Poor fit in deep UV (above 6 eV)
Ge wafer with 89 nm thermal oxide (5 hours)

- Cleaned, then oxidized for five hours at 550°C.
- 7% non-uniformity.
- Poor fit in deep UV (above 6 eV)
Ge wafer with 136 nm thermal oxide (10 hours)

- Cleaned, then oxidized for ten hours at 550ºC.
- 1% non-uniformity.
- 4 nm spectral bandwidth.
- Poor fit in deep UV (above 6 eV)
Preliminary optical constants for Ge and GeO$_2$

- Determined using multi-sample analysis (2, 34, 52, 89, 136 nm)

Similar to Jellison/UNL data
Higher amplitude than Aspnes
Broader spectral range (0.5 to 6.6 eV)
Bigger differences in UV.

Much broader spectral range.
Absorption begins at 6.5 eV.
Tauc-Lorentz oscillator fit.
Remaining issues

- **Depolarization** of reflected light
 - Thickness non-uniformity (20 mm sample size)
 - Insufficient monochromator resolution (4 nm)
- Does the density vary between samples?
- Need to improve XRR fits for some samples.
- Is there a **density gradient** in the oxide?
- Do we need to consider surface roughness (no AFM yet)?
- Is there an interfacial layer at the GeO\(_2\)/Ge interface?
- Is a simple Tauc-Lorentz oscillator sufficient for GeO\(_2\)?
- Need FTIR-SE to study phonons.
Summary

Optical constants for Ge and GeO$_2$

- Developed UV-ozone clean for thermal oxidation of Ge.
- Performed thermal oxidation of Ge at 550ºC for 1 to 10 hours.
- Multi-sample ellipsometry fit of ellipsometric angles.
- Dielectric function of Ge and GeO$_2$ from 0.5 to 6.5 eV.

![Graphs of Ge and GeO$_2$ dielectric functions](http://ellipsometry.nmsu.edu)